Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
Sci Rep ; 14(1): 8724, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622152

RESUMO

The objective of this study is to define structure-function relationships of pathological lesions related to age-related macular degeneration (AMD) using microperimetry and multimodal retinal imaging. We conducted a cross-sectional study of 87 patients with AMD (30 eyes with early and intermediate AMD and 110 eyes with advanced AMD), compared to 33 normal controls (66 eyes) recruited from a single tertiary center. All participants had enface and cross-sectional optical coherence tomography (Heidelberg HRA-2), OCT angiography, color and infra-red (IR) fundus and microperimetry (MP) (Nidek MP-3) performed. Multimodal images were graded for specific AMD pathological lesions. A custom marking tool was used to demarcate lesion boundaries on corresponding enface IR images, and subsequently superimposed onto MP color fundus photographs with retinal sensitivity points (RSP). The resulting overlay was used to correlate pathological structural changes to zonal functional changes. Mean age of patients with early/intermediate AMD, advanced AMD and controls were 73(SD = 8.2), 70.8(SD = 8), and 65.4(SD = 7.7) years respectively. Mean retinal sensitivity (MRS) of both early/intermediate (23.1 dB; SD = 5.5) and advanced AMD (18.1 dB; SD = 7.8) eyes were significantly worse than controls (27.8 dB, SD = 4.3) (p < 0.01). Advanced AMD eyes had significantly more unstable fixation (70%; SD = 63.6), larger mean fixation area (3.9 mm2; SD = 3.0), and focal fixation point further away from the fovea (0.7 mm; SD = 0.8), than controls (29%; SD = 43.9; 2.6 mm2; SD = 1.9; 0.4 mm; SD = 0.3) (p ≤ 0.01). Notably, 22 fellow eyes of AMD eyes (25.7 dB; SD = 3.0), with no AMD lesions, still had lower MRS than controls (p = 0.04). For specific AMD-related lesions, end-stage changes such as fibrosis (5.5 dB, SD = 5.4 dB) and atrophy (6.2 dB, SD = 7.0 dB) had the lowest MRS; while drusen and pigment epithelial detachment (17.7 dB, SD = 8.0 dB) had the highest MRS. Peri-lesional areas (20.2 dB, SD = 7.6 dB) and surrounding structurally normal areas (22.2 dB, SD = 6.9 dB) of the retina with no AMD lesions still had lower MRS compared to controls (27.8 dB, SD = 4.3 dB) (p < 0.01). Our detailed topographic structure-function correlation identified specific AMD pathological changes associated with a poorer visual function. This can provide an added value to the assessment of visual function to optimize treatment outcomes to existing and potentially future novel therapies.


Assuntos
Degeneração Macular , Humanos , Estudos Transversais , Estudos Prospectivos , Degeneração Macular/diagnóstico por imagem , Tomografia de Coerência Óptica , Angiofluoresceinografia , Relação Estrutura-Atividade
2.
BMJ Open Ophthalmol ; 9(1)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460964

RESUMO

PURPOSE: Subretinal drusenoid deposits (SDDs) in age-related macular degeneration (AMD) are associated with systemic vascular diseases that compromise ocular perfusion. We demonstrate that SDDs are associated with decreased ellipsoid zone (EZ) thickness, further evidence of hypoxic damage. METHODS: Post hoc analysis of a cross-sectional study. 165 AMD subjects (aged 51-100; 61% women). Spectral-domain optical coherence tomography was obtained in both eyes. Masked readers assigned subjects to three groups: drusen only, SDD+drusen (SDD+D) and SDD only. EZ thickness was measured subfoveally and 2000 µm nasally, temporally, superiorly and inferiorly from the fovea. Univariate testing was performed using two-tailed t-tests with Bonferroni correction. RESULTS: The mean EZ thickness differences between the SDD+D and drusen-only groups were (in µm) 1.10, 0.67, 1.21, 1.10 and 0.50 at the foveal, nasal, temporal, superior and inferior locations, respectively (p=0.08 inferiorly, otherwise p≤0.01); between the SDD-only and drusen-only groups, the differences were 3.48, 2.48, 2.42, 2.08 and 1.42 (p≤0.0002). Differences in EZ thicknesses across all subjects and between groups were not significantly different based on gender, race or age. CONCLUSION: Subjects with SDDs (±drusen) had thinner EZs than those with drusen only, and the inferior EZ was least affected. EZs were thinnest in SDD-only subjects. This thinning gradation is consistent with progressive destruction of highly oxygen-sensitive mitochondria in the EZ from hypoxia. These findings support the reduced ophthalmic perfusion hypothesis for the formation of SDDs secondary to high-risk systemic vasculopathy.


Assuntos
Dapsona/análogos & derivados , Degeneração Macular , Drusas Retinianas , Humanos , Feminino , Masculino , Drusas Retinianas/diagnóstico por imagem , Estudos Transversais , Degeneração Macular/diagnóstico por imagem , Retina , Tomografia de Coerência Óptica/métodos
3.
Sci Rep ; 14(1): 5854, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462646

RESUMO

Neovascular age-related macular degeneration (nAMD) can result in blindness if left untreated, and patients often require repeated anti-vascular endothelial growth factor injections. Although, the treat-and-extend method is becoming popular to reduce vision loss attributed to recurrence, it may pose a risk of overtreatment. This study aimed to develop a deep learning model based on DenseNet201 to predict nAMD recurrence within 3 months after confirming dry-up 1 month following three loading injections in treatment-naïve patients. A dataset of 1076 spectral domain optical coherence tomography (OCT) images from 269 patients diagnosed with nAMD was used. The performance of the model was compared with that of 6 ophthalmologists, using 100 randomly selected samples. The DenseNet201-based model achieved 53.0% accuracy in predicting nAMD recurrence using a single pre-injection image and 60.2% accuracy after viewing all the images immediately after the 1st, 2nd, and 3rd injections. The model outperformed experienced ophthalmologists, with an average accuracy of 52.17% using a single pre-injection image and 53.3% after examining four images before and after three loading injections. In conclusion, the artificial intelligence model demonstrated a promising ability to predict nAMD recurrence using OCT images and outperformed experienced ophthalmologists. These findings suggest that deep learning models can assist in nAMD recurrence prediction, thus improving patient outcomes and optimizing treatment strategies.


Assuntos
Degeneração Macular , Degeneração Macular Exsudativa , Humanos , Tomografia de Coerência Óptica/métodos , Inteligência Artificial , Estudos Retrospectivos , Redes Neurais de Computação , Degeneração Macular/diagnóstico por imagem , Injeções Intravítreas , Inibidores da Angiogênese/uso terapêutico , Degeneração Macular Exsudativa/diagnóstico por imagem , Degeneração Macular Exsudativa/tratamento farmacológico , Ranibizumab
4.
Br J Ophthalmol ; 108(3): 417-423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36720585

RESUMO

AIMS: To develop an algorithm to classify multiple retinal pathologies accurately and reliably from fundus photographs and to validate its performance against human experts. METHODS: We trained a deep convolutional ensemble (DCE), an ensemble of five convolutional neural networks (CNNs), to classify retinal fundus photographs into diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD) and normal eyes. The CNN architecture was based on the InceptionV3 model, and initial weights were pretrained on the ImageNet dataset. We used 43 055 fundus images from 12 public datasets. Five trained ensembles were then tested on an 'unseen' set of 100 images. Seven board-certified ophthalmologists were asked to classify these test images. RESULTS: Board-certified ophthalmologists achieved a mean accuracy of 72.7% over all classes, while the DCE achieved a mean accuracy of 79.2% (p=0.03). The DCE had a statistically significant higher mean F1-score for DR classification compared with the ophthalmologists (76.8% vs 57.5%; p=0.01) and greater but statistically non-significant mean F1-scores for glaucoma (83.9% vs 75.7%; p=0.10), AMD (85.9% vs 85.2%; p=0.69) and normal eyes (73.0% vs 70.5%; p=0.39). The DCE had a greater mean agreement between accuracy and confident of 81.6% vs 70.3% (p<0.001). DISCUSSION: We developed a deep learning model and found that it could more accurately and reliably classify four categories of fundus images compared with board-certified ophthalmologists. This work provides proof-of-principle that an algorithm is capable of accurate and reliable recognition of multiple retinal diseases using only fundus photographs.


Assuntos
Aprendizado Profundo , Retinopatia Diabética , Glaucoma , Degeneração Macular , Oftalmologistas , Humanos , Fundo de Olho , Redes Neurais de Computação , Degeneração Macular/diagnóstico por imagem , Retinopatia Diabética/diagnóstico por imagem , Glaucoma/diagnóstico
6.
PLoS One ; 18(12): e0288861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134207

RESUMO

PURPOSE: To analyze the morphological changes of macular neovascularization (MNV) in exudative neovascular age-related macular degeneration under long-term intravitreal anti-vascular endothelial growth factor (VEGF) therapy in a retrospective cohort study. METHODS AND PATIENTS: We evaluated 143 nAMD eyes of 94 patients (31 male, 63 female; initial age 55-97 y, mean age 75.9 ± 7.5 y), who started anti-VEGF therapy (IVAN pro re nata (PRN) protocol) between 2009-2018 and received ongoing therapy until the last recorded visit (mean follow-up 5.3 ± 2.9 y, range 1-14 y). The mean total number of injections was 33.3 ± 19.8 with 7.0 ± 2.3 injections/year. MNV size and, if present, associated complete retinal pigment epithelium (RPE) and outer retina atrophy (cRORA) size were measured on optical coherence tomography (OCT) volume scans at the initial visit and for each year of follow-up. MNV and cRORA were identified on B-scans and their respective borders were manually transposed onto the en-face near infrared image and measured in mm2. RESULTS: MNV enlarged through follow-up, with a mean growth rate of 1.24 mm2 / year. The mean growth in MNV size was independent of initial MNV size, age, gender, MNV subtypes or number of injections per year. Nevertheless, a great interindividual variation in size and growth was observed. cRORA developed in association with increasing MNV size and its incidence increased linearly over follow-up. cRORA lesions also showed continuous growth by a rate of 1.22 mm2 / year. CONCLUSIONS: Despite frequent long-term anti-VEGF therapy, we observed ongoing MNV growth. This is consistent with the concept that the development of MNV may be a physiological biological repair mechanism to preserve RPE and photoreceptor function, provided hyperpermeability and fluid exudation are controlled. Whether recurring low VEGF levels or other factors are responsible for MNV growth remains controversial.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Degeneração Macular Exsudativa , Humanos , Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Estudos Retrospectivos , Angiofluoresceinografia , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/tratamento farmacológico , Injeções Intravítreas , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/tratamento farmacológico , Tomografia de Coerência Óptica , Degeneração Macular Exsudativa/tratamento farmacológico
7.
Comput Biol Med ; 167: 107616, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37922601

RESUMO

Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly, highlighting the need for early and accurate detection. In this study, we proposed DeepDrAMD, a hierarchical vision transformer-based deep learning model that integrates data augmentation techniques and SwinTransformer, to detect AMD and distinguish between different subtypes using color fundus photographs (CFPs). The DeepDrAMD was trained on the in-house WMUEH training set and achieved high performance in AMD detection with an AUC of 98.76% in the WMUEH testing set and 96.47% in the independent external Ichallenge-AMD cohort. Furthermore, the DeepDrAMD effectively classified dryAMD and wetAMD, achieving AUCs of 93.46% and 91.55%, respectively, in the WMUEH cohort and another independent external ODIR cohort. Notably, DeepDrAMD excelled at distinguishing between wetAMD subtypes, achieving an AUC of 99.36% in the WMUEH cohort. Comparative analysis revealed that the DeepDrAMD outperformed conventional deep-learning models and expert-level diagnosis. The cost-benefit analysis demonstrated that the DeepDrAMD offers substantial cost savings and efficiency improvements compared to manual reading approaches. Overall, the DeepDrAMD represents a significant advancement in AMD detection and differential diagnosis using CFPs, and has the potential to assist healthcare professionals in informed decision-making, early intervention, and treatment optimization.


Assuntos
Aprendizado Profundo , Degeneração Macular , Humanos , Idoso , Diagnóstico Diferencial , Degeneração Macular/diagnóstico por imagem , Técnicas de Diagnóstico Oftalmológico , Fotografação/métodos
8.
Neuroreport ; 34(18): 845-852, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37942735

RESUMO

OBJECTIVE: Age-related macular degeneration (AMD) is a serious blinding eye disease. Previous neuroimaging studies reported that AMD were accompanied by abnormalities of the brain. However, whether AMD patients were associated with functional connectivity strength (FCS) or not remains unknown. In our study, the purpose of the study was to assess FCS changes in AMD patients. METHODS: In our study, 20 AMD patients and 20 healthy controls (HCs), matched closely by sex, age, and educational level were underwent MRI scanning. FCS method and seed-based functional connectivity (FC) method were applied to investigate the functional network changes between two groups. Moreover, support vector machine (SVM) method was applied to assess the FCS maps as a feature to classification of AMD diseases. RESULTS: Our study reported that AMD patients showed decreased FCS values in the bilateral calcarine, left supplementary motor area, left superior parietal lobule and left paracentral lobule (ParaL) relative to the HC group. Meanwhile, our study found that the AMD patients showed abnormal FC within visual network, sensorimotor network and default mode network. Moreover, the SVM method showed that FCS maps as machine learning features shows good classification efficiency (area under curve = 0.82) in the study. CONCLUSION: Our study demonstrated that AMD patients showed abnormal FCS with the visual network, sensorimotor network and default mode network, which might reflect the impaired vision, cognition and motor function in AMD patients. In addition, FCS indicator can be used as an effective biological marker to assist the clinical diagnosis of AMD.


Assuntos
Degeneração Macular , Córtex Motor , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Lobo Parietal , Degeneração Macular/diagnóstico por imagem
9.
Sci Rep ; 13(1): 19667, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952011

RESUMO

Recent developments in deep learning have shown success in accurately predicting the location of biological markers in Optical Coherence Tomography (OCT) volumes of patients with Age-Related Macular Degeneration (AMD) and Diabetic Retinopathy (DR). We propose a method that automatically locates biological markers to the Early Treatment Diabetic Retinopathy Study (ETDRS) rings, only requiring B-scan-level presence annotations. We trained a neural network using 22,723 OCT B-Scans of 460 eyes (433 patients) with AMD and DR, annotated with slice-level labels for Intraretinal Fluid (IRF) and Subretinal Fluid (SRF). The neural network outputs were mapped into the corresponding ETDRS rings. We incorporated the class annotations and domain knowledge into a loss function to constrain the output with biologically plausible solutions. The method was tested on a set of OCT volumes with 322 eyes (189 patients) with Diabetic Macular Edema, with slice-level SRF and IRF presence annotations for the ETDRS rings. Our method accurately predicted the presence of IRF and SRF in each ETDRS ring, outperforming previous baselines even in the most challenging scenarios. Our model was also successfully applied to en-face marker segmentation and showed consistency within C-scans, despite not incorporating volume information in the training process. We achieved a correlation coefficient of 0.946 for the prediction of the IRF area.


Assuntos
Retinopatia Diabética , Degeneração Macular , Edema Macular , Humanos , Retinopatia Diabética/diagnóstico por imagem , Edema Macular/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Degeneração Macular/diagnóstico por imagem , Biomarcadores
10.
Sci Rep ; 13(1): 20354, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990107

RESUMO

To create a deep learning (DL) classifier pre-trained on fundus autofluorescence (FAF) images that can assist the clinician in distinguishing age-related geographic atrophy from extensive macular atrophy and pseudodrusen-like appearance (EMAP). Patients with complete outer retinal and retinal pigment epithelium atrophy secondary to either EMAP (EMAP Group) or to dry age related macular degeneration (AMD group) were retrospectively selected. Fovea-centered posterior pole (30° × 30°) and 55° × 55° degree-field-of-view FAF images of sufficiently high quality were collected and used to train two different deep learning (DL) classifiers based on ResNet-101 design. Testing was performed on a set of images coming from a different center. A total of 300 patients were recruited, 135 belonging to EMAP group and 165 belonging to AMD group. The 30° × 30° FAF based DL classifier showed a sensitivity of 84.6% and a specificity of 85.3% for the diagnosis of EMAP. The 55° × 55° FAF based DL classifier showed a sensitivity of 90% and a specificity of 84.6%, a performance that was significantly higher than that of the 30° × 30° classifer (p = 0.037). Artificial intelligence can accurately distinguish between atrophy caused by AMD or by EMAP on FAF images. Its performance are improved using wide field acquisitions.


Assuntos
Aprendizado Profundo , Atrofia Geográfica , Degeneração Macular , Humanos , Estudos Retrospectivos , Inteligência Artificial , Atrofia Geográfica/diagnóstico , Angiofluoresceinografia , Degeneração Macular/diagnóstico por imagem , Fundo de Olho , Atrofia
11.
Sci Rep ; 13(1): 19545, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945665

RESUMO

Real-world retinal optical coherence tomography (OCT) scans are available in abundance in primary and secondary eye care centres. They contain a wealth of information to be analyzed in retrospective studies. The associated electronic health records alone are often not enough to generate a high-quality dataset for clinical, statistical, and machine learning analysis. We have developed a deep learning-based age-related macular degeneration (AMD) stage classifier, to efficiently identify the first onset of early/intermediate (iAMD), atrophic (GA), and neovascular (nAMD) stage of AMD in retrospective data. We trained a two-stage convolutional neural network to classify macula-centered 3D volumes from Topcon OCT images into 4 classes: Normal, iAMD, GA and nAMD. In the first stage, a 2D ResNet50 is trained to identify the disease categories on the individual OCT B-scans while in the second stage, four smaller models (ResNets) use the concatenated B-scan-wise output from the first stage to classify the entire OCT volume. Classification uncertainty estimates are generated with Monte-Carlo dropout at inference time. The model was trained on a real-world OCT dataset, 3765 scans of 1849 eyes, and extensively evaluated, where it reached an average ROC-AUC of 0.94 in a real-world test set.


Assuntos
Aprendizado Profundo , Degeneração Macular , Humanos , Tomografia de Coerência Óptica/métodos , Estudos Retrospectivos , Degeneração Macular/diagnóstico por imagem , Redes Neurais de Computação
12.
Sci Rep ; 13(1): 19513, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945766

RESUMO

To compare the choroidal neovascular features of individuals with pachychoroid neovasculopathy (PNV) and neovascular age-related macular degeneration (nAMD) with and without shallow irregular pigment epithelial detachment (SIPED). Using optical coherence tomography angiography, the choroidal neovascular complexes of 27 patients with PNV, 34 patients with nAMD and SIPED, and 15 patients with nAMD without SIPED were analyzed with FIJI and AngioTool software. PNV compared to nAMD with SIPED had a greater vessel percentage area (P = 0.034), junction density (P = 0.045), average vessel length (P < 0.001), and fractal dimension (P < 0.001). PNV, compared to nAMD without SIPED, had a greater total vessel length (P = 0.002), total number of junctions (P < 0.001), junction density (P = 0.034), and fractal dimension (P = 0.005). nAMD with SIPED, compared to nAMD without SIPED, had greater vessel area, total number of junctions, total vessel length, and average vessel length (all P values < 0.001). Patients with nAMD plus SIPED and individuals with nAMD without SIPED have similar fractal dimension values (P = 0.703). Biomarkers of choroidal neovascular complexity, such as fractal dimension, can be used to differentiate PNV from nAMD with or without SIPED.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Descolamento Retiniano , Degeneração Macular Exsudativa , Humanos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/tratamento farmacológico , Descolamento Retiniano/diagnóstico por imagem , Corioide/irrigação sanguínea , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/tratamento farmacológico , Angiografia , Tomografia de Coerência Óptica/métodos , Estudos Retrospectivos , Angiofluoresceinografia/métodos , Inibidores da Angiogênese/uso terapêutico
13.
Sci Rep ; 13(1): 19013, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923770

RESUMO

To assist ophthalmologists in diagnosing retinal abnormalities, Computer Aided Diagnosis has played a significant role. In this paper, a particular Convolutional Neural Network based on Wavelet Scattering Transform (WST) is used to detect one to four retinal abnormalities from Optical Coherence Tomography (OCT) images. Predefined wavelet filters in this network decrease the computation complexity and processing time compared to deep learning methods. We use two layers of the WST network to obtain a direct and efficient model. WST generates a sparse representation of the images which is translation-invariant and stable concerning local deformations. Next, a Principal Component Analysis classifies the extracted features. We evaluate the model using four publicly available datasets to have a comprehensive comparison with the literature. The accuracies of classifying the OCT images of the OCTID dataset into two and five classes were [Formula: see text] and [Formula: see text], respectively. We achieved an accuracy of [Formula: see text] in detecting Diabetic Macular Edema from Normal ones using the TOPCON device-based dataset. Heidelberg and Duke datasets contain DME, Age-related Macular Degeneration, and Normal classes, in which we achieved accuracy of [Formula: see text] and [Formula: see text], respectively. A comparison of our results with the state-of-the-art models shows that our model outperforms these models for some assessments or achieves nearly the best results reported so far while having a much smaller computational complexity.


Assuntos
Retinopatia Diabética , Degeneração Macular , Edema Macular , Humanos , Edema Macular/diagnóstico por imagem , Retinopatia Diabética/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem , Degeneração Macular/diagnóstico por imagem
14.
Medicina (Kaunas) ; 59(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37893547

RESUMO

Background and Objectives: Early diagnosis of the exudative form of age-related macular degeneration (AMD) is very important for a timely first treatment, which is directly related to the preservation of functional visual acuity over a long period. The goal of this paper was to examine the correlation between the double-layer sign (DLS) and the presence of non-exudative macular neovascularization (MNV). Materials and Methods: Our research included 60 patients with AMD, exudative in one eye and non-exudative in the other eye. We analyzed only the non-exudative form using optical coherence tomography (OCT) and optical coherence tomography angiography (OCT-A). The patients were classified into three groups, depending on the duration of the disease (<2 years, 2 to 5 years, >5 years). The onset of the disease was deemed the moment of establishing a diagnosis of exudative AMD in one eye. We defined the presence or absence of a DLS using OCT and the presence of non-exudative MNV using OCT-A, both on 3 × 3 mm and 6 × 6 mm sections. DLS was used as a projection biomarker for non-exudative MNV, with the aim of establishing a rapid diagnosis and achieving early treatment of the disease. Results: We found that there was a statistically significant correlation between the DLS diagnosed using OCT and non-exudative MNV diagnosed by OCT-A for both 3 × 3 mm (p < 0.001) and 6 × 6 mm (p < 0.001) imaging. There was a statistically significant difference between the frequencies of both DLS and MNV in Groups I and III on both 3 × 3 and 6 × 6 mm imaging. A statistically significant difference was also noted in the frequencies of DLS and MNV on 6 × 6 mm imaging, but not on 3 × 3 mm imaging, between Groups I and II. No differences were found between the frequencies of DLS and MNV between Groups II and III. Conclusions: The DLS on OCT can be used as a projection biomarker to assess the presence of a non-exudative MNV.


Assuntos
Degeneração Macular , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos , Estudos Prospectivos , Degeneração Macular/diagnóstico por imagem , Neovascularização Patológica , Biomarcadores , Estudos Retrospectivos
15.
JAMA Ophthalmol ; 141(11): 1052-1061, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856139

RESUMO

Importance: The identification of patients at risk of progressing from intermediate age-related macular degeneration (iAMD) to geographic atrophy (GA) is essential for clinical trials aimed at preventing disease progression. DeepGAze is a fully automated and accurate convolutional neural network-based deep learning algorithm for predicting progression from iAMD to GA within 1 year from spectral-domain optical coherence tomography (SD-OCT) scans. Objective: To develop a deep-learning algorithm based on volumetric SD-OCT scans to predict the progression from iAMD to GA during the year following the scan. Design, Setting, and Participants: This retrospective cohort study included participants with iAMD at baseline and who either progressed or did not progress to GA within the subsequent 13 months. Participants were included from centers in 4 US states. Data set 1 included patients from the Age-Related Eye Disease Study 2 AREDS2 (Ancillary Spectral-Domain Optical Coherence Tomography) A2A study (July 2008 to August 2015). Data sets 2 and 3 included patients with imaging taken in routine clinical care at a tertiary referral center and associated satellites between January 2013 and January 2023. The stored imaging data were retrieved for the purpose of this study from July 1, 2022, to February 1, 2023. Data were analyzed from May 2021 to July 2023. Exposure: A position-aware convolutional neural network with proactive pseudointervention was trained and cross-validated on Bioptigen SD-OCT volumes (data set 1) and validated on 2 external data sets comprising Heidelberg Spectralis SD-OCT scans (data sets 2 and 3). Main Outcomes and Measures: Prediction of progression to GA within 13 months was evaluated with area under the receiver-operator characteristic curves (AUROC) as well as area under the precision-recall curve (AUPRC), sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. Results: The study included a total of 417 patients: 316 in data set 1 (mean [SD] age, 74 [8]; 185 [59%] female), 53 in data set 2, (mean [SD] age, 83 [8]; 32 [60%] female), and 48 in data set 3 (mean [SD] age, 81 [8]; 32 [67%] female). The AUROC for prediction of progression from iAMD to GA within 1 year was 0.94 (95% CI, 0.92-0.95; AUPRC, 0.90 [95% CI, 0.85-0.95]; sensitivity, 0.88 [95% CI, 0.84-0.92]; specificity, 0.90 [95% CI, 0.87-0.92]) for data set 1. The addition of expert-annotated SD-OCT features to the model resulted in no improvement compared to the fully autonomous model (AUROC, 0.95; 95% CI, 0.92-0.95; P = .19). On an independent validation data set (data set 2), the model predicted progression to GA with an AUROC of 0.94 (95% CI, 0.91-0.96; AUPRC, 0.92 [0.89-0.94]; sensitivity, 0.91 [95% CI, 0.74-0.98]; specificity, 0.80 [95% CI, 0.63-0.91]). At a high-specificity operating point, simulated clinical trial recruitment was enriched for patients progressing to GA within 1 year by 8.3- to 20.7-fold (data sets 2 and 3). Conclusions and Relevance: The fully automated, position-aware deep-learning algorithm assessed in this study successfully predicted progression from iAMD to GA over a clinically meaningful time frame. The ability to predict imminent GA progression could facilitate clinical trials aimed at preventing the condition and could guide clinical decision-making regarding screening frequency or treatment initiation.


Assuntos
Aprendizado Profundo , Atrofia Geográfica , Degeneração Macular , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Algoritmos , Progressão da Doença , Atrofia Geográfica/diagnóstico por imagem , Degeneração Macular/diagnóstico por imagem , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Ensaios Clínicos como Assunto
16.
Transl Vis Sci Technol ; 12(10): 3, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37792693

RESUMO

Purpose: Machine learning models based on radiomic feature extraction from clinical imaging data provide effective and interpretable means for clinical decision making. This pilot study evaluated whether radiomics features in baseline optical coherence tomography (OCT) images of eyes with pigment epithelial detachment (PED) associated with neovascular age-related macular degeneration (nAMD) can predict treatment response to as-needed anti-vascular endothelial growth factor (VEGF) therapy. Methods: Thirty-nine eyes of patients with PED undergoing anti-VEGF therapy were included. All eyes underwent a loading dose followed by as-needed therapy. OCT images at baseline, month 3, and month 6 were analyzed. Images were manually separated into non-responding, recurring, and responding eyes based on the presence or absence of subretinal fluid at month 6. PED radiomics features were then extracted from each image and images were classified as responding or recurring using a machine learning classifier applied to the radiomics features. Results: Linear discriminant analysis classification of baseline features as responsive versus recurring resulted in classification performance of 64.0% (95% confidence interval [CI] = 0.63-0.65), area under the curve (AUC = 0.78, 95% CI = 0.72-0.82), sensitivity 0.79 (95% CI = 0.63-0.87), and specificity 0.58 (95% CI = 0.50-0.67). Further analysis of features in recurring eyes identified a significant shift toward non-responding mean feature values over 6 months. Conclusions: Our results demonstrate the use of radiomics features as predictors for treatment response to as-needed anti-VEGF therapy. Our study demonstrates the potential for radiomics feature in clinical decision support for personalizing anti-VEGF therapy. Translational Relevance: The ability to use PED texture features to predict treatment response facilitates personalized clinical decision making.


Assuntos
Degeneração Macular , Descolamento Retiniano , Humanos , Ranibizumab/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Projetos Piloto , Estudos Retrospectivos , Descolamento Retiniano/diagnóstico por imagem , Descolamento Retiniano/tratamento farmacológico , Descolamento Retiniano/complicações , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/tratamento farmacológico
17.
Sci Rep ; 13(1): 17417, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833348

RESUMO

This study aimed to determine the retest variability of quantitative fundus autofluorescence (QAF) in patients with and without age-related macular degeneration (AMD) and evaluate the predictive value of patient reliability indices on retest reliability. A total of 132 eyes from 68 patients were examined, including healthy individuals and those with various stages of AMD. Duplicate QAF imaging was conducted at baseline and 2 weeks later across six study sites. Intraclass correlation (ICC) analysis was used to evaluate the consistency of imaging, and mean opinion scores (MOS) of image quality were generated by two researchers. The contribution of MOS and other factors to retest variation was assessed using mixed-effect linear models. Additionally, a Random Forest Regressor was trained to evaluate the extent to which manual image grading of image quality could be replaced by automated assessment (inferred MOS). The results showed that ICC values were high for all QAF images, with slightly lower values in AMD-affected eyes. The average inter-day ICC was found to be 0.77 for QAF segments within the QAF8 ring and 0.74 for peripheral segments. Image quality was predicted with a mean absolute error of 0.27 on a 5-point scale, and of all evaluated reliability indices, MOS/inferred MOS proved most important. The findings suggest that QAF allows for reliable testing of autofluorescence levels at the posterior pole in patients with AMD in a multicenter, multioperator setting. Patient reliability indices could serve as eligibility criteria for clinical trials, helping identify patients with adequate retest reliability.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Reprodutibilidade dos Testes , Angiofluoresceinografia/métodos , Fundo de Olho , Degeneração Macular/diagnóstico por imagem
18.
J Vis Exp ; (198)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677008

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness among older individuals, and its prevalence is rapidly increasing due to the aging population. Choroidal neovascularization (CNV) or wet AMD, which accounts for 10%-20% of all AMD cases, is responsible for an alarming 80%-90% of AMD-related blindness. Current anti-VEGF therapies show suboptimal responses in approximately 50% of patients. Resistance to anti-VEGF treatment in CNV patients is often associated with arteriolar CNV, while responders tend to have capillary CNV. While fluorescein angiography (FA) is commonly used to assess leakage patterns in wet AMD patients and animal models, it does not provide information about CNV vascular morphology (arteriolar CNV vs. capillary CNV). This protocol introduces the use of indocyanine green angiography (ICGA) to characterize lesion types in laser-induced CNV mouse models. This method is crucial for investigating the mechanisms and treatment strategies for anti-VEGF resistance in wet AMD. It is recommended to incorporate ICGA alongside FA for comprehensive assessment of both leakage and vascular features of CNV in mechanistic and therapeutic studies.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Animais , Camundongos , Verde de Indocianina , Angiofluoresceinografia , Degeneração Macular/diagnóstico por imagem , Cegueira , Neovascularização de Coroide/diagnóstico por imagem , Modelos Animais de Doenças
19.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687770

RESUMO

Artificial intelligence has revolutionised smart medicine, resulting in enhanced medical care. This study presents an automated detector chip for age-related macular degeneration (AMD) using a support vector machine (SVM) and three-dimensional (3D) optical coherence tomography (OCT) volume. The aim is to assist ophthalmologists by reducing the time-consuming AMD medical examination. Using the property of 3D OCT volume, a modified feature vector connected method called slice-sum is proposed, reducing computational complexity while maintaining high detection accuracy. Compared to previous methods, this method significantly reduces computational complexity by at least a hundredfold. Image adjustment and noise removal steps are excluded for classification accuracy, and the feature extraction algorithm of local binary patterns is determined based on hardware consumption considerations. Through optimisation of the feature vector connection method after feature extraction, the computational complexity of SVM detection is significantly reduced, making it applicable to similar 3D datasets. Additionally, the design supports model replacement, allowing users to train and update classification models as needed. Using TSMC 40 nm CMOS technology, the proposed detector achieves a core area of 0.12 mm2 while demonstrating a classification throughput of 8.87 decisions/s at a maximum operating frequency of 454.54 MHz. The detector achieves a final testing classification accuracy of 92.31%.


Assuntos
Inteligência Artificial , Degeneração Macular , Humanos , Máquina de Vetores de Suporte , Tomografia de Coerência Óptica , Algoritmos , Degeneração Macular/diagnóstico por imagem
20.
Sci Rep ; 13(1): 16231, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758754

RESUMO

Deep neural networks have been increasingly proposed for automated screening and diagnosis of retinal diseases from optical coherence tomography (OCT), but often provide high-confidence predictions on out-of-distribution (OOD) cases, compromising their clinical usage. With this in mind, we performed an in-depth comparative analysis of the state-of-the-art uncertainty estimation methods for OOD detection in retinal OCT imaging. The analysis was performed within the use-case of automated screening and staging of age-related macular degeneration (AMD), one of the leading causes of blindness worldwide, where we achieved a macro-average area under the curve (AUC) of 0.981 for AMD classification. We focus on a few-shot Outlier Exposure (OE) method and the detection of near-OOD cases that share pathomorphological characteristics with the inlier AMD classes. Scoring the OOD case based on the Cosine distance in the feature space from the penultimate network layer proved to be a robust approach for OOD detection, especially in combination with the OE. Using Cosine distance and only 8 outliers exposed per class, we were able to improve the near-OOD detection performance of the OE with Reject Bucket method by [Formula: see text] 10% compared to without OE, reaching an AUC of 0.937. The Cosine distance served as a robust metric for OOD detection of both known and unknown classes and should thus be considered as an alternative to the reject bucket class probability in OE approaches, especially in the few-shot scenario. The inclusion of these methodologies did not come at the expense of classification performance, and can substantially improve the reliability and trustworthiness of the resulting deep learning-based diagnostic systems in the context of retinal OCT.


Assuntos
Aprendizado Profundo , Degeneração Macular , Humanos , Tomografia de Coerência Óptica , Reprodutibilidade dos Testes , Área Sob a Curva , Terapia Comportamental , Degeneração Macular/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...